Part 2: Auto dataset revisited

We also used the auto dataset two weeks ago in . We used it with LDA and QDA. Both methods in R provide a CV argument that will compute a LOOCV estimate for us. If we want to compute a k-fold cross validation estimate when k is not equal to the number of instances, we have to either write our own code or find another library to use. Here we will write our own code! Write a function that accepts a dataframe, a model-building function (either lda or qda), and a value for K and returns an error estimate and its variance for k-fold cross validation. Use this function to generate values for the same kind of table you made in part 1. Compare these values to using the training set and a validation set to estimate the error rates, too. Finally, include a paragraph summarizing and explaining the results just as you did in part 1.

Note: The lab6 he is referring is attached here. That is where the auto dataset being analyzed

Testimonials

Cross Validation
We have updated our contact contact information. Text Us Or WhatsApp Us+1-(309) 295-6991